DB101S ~ DB107S # SURFACE MOUNT GLASS PASSIVATED BRIDGE RECTIFIERS REVERSE VOLTAGE - 50 to 1000 Volts FORWARD CURRENT - 1.0 Ampere #### **FEATURES** - ●Rating to 1000V PRV - Ideal for printed circuit board - ●Low forward voltage drop, high current capability - Reliable low cost construction utilizing molded plastic technique results in inexpensive product - The plastic material has UL flammability classification 94V-0 ## **MECHANICAL DATA** - Polarit: As marked on Body - ●Weight:0.02 ounces,0.38 grams - •Mounting position:Any Dimensions in inches and (millimeters) ### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Rating at 25℃ ambient temperature unless otherwise specified. Single phase, half wave ,60Hz, resistive or inductive load. For capacitive load, derate current by 20% | SYMBOL | DB101S | DB102S | DB103S | DB104S | DB105S | DB106S | DB107S | UNIT | |------------------|---|---|--|--|--|--|--|---| | VRRM | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V | | VRMS | 35 | 70 | 140 | 280 | 420 | 560 | 700 | V | | VDC | 50 | 100 | 200 | 400 | 600 | 800 | 1000 | V | | I(AV) | 1.0 | | | | | | | Α | | IFSM | 30 | | | | | | | А | | VF | 1.1 | | | | | | V | | | lr | 10
500 | | | | | | | μA | | l ² t | 10.4 | | | | | | | A^2s | | CJ | 25 | | | | | | | pF | | Reja | 40 | | | | | | | °C/W | | TJ | -55 to +150 | | | | | | | $^{\circ}\!\mathrm{C}$ | | Tstg | -55 to +150 | | | | | | | $^{\circ}$ C | | | VRRM VRMS VDC I(AV) IFSM VF IR CJ R0JA TJ | VRRM 50 VRMS 35 VDC 50 I(AV) IFSM VF IR I ² t CJ R0JA TJ | VRRM 50 100 VRMS 35 70 VDC 50 100 I(AV) IFSM VF IR I²t CJ RØJA TJ TJ | VRRM 50 100 200 VRMS 35 70 140 VDC 50 100 200 I(AV) IFSM VF IR I ² t CJ Reja TJ | VRRM 50 100 200 400 VRMS 35 70 140 280 VDC 50 100 200 400 I(AV) 1.0 IFSM 30 VF 1.1 IR 500 I ² t 10.4 CJ 25 RØJA 40 TJ -55 to +150 | VRRM 50 100 200 400 600 VRMS 35 70 140 280 420 VDC 50 100 200 400 600 I(AV) 1.0 IFSM 30 VF 1.1 IR 10 500 I²t 10.4 CJ 25 RØJA 40 TJ -55 to +150 | VRRM 50 100 200 400 600 800 VRMS 35 70 140 280 420 560 VDC 50 100 200 400 600 800 I(AV) 1.0 IFSM 30 VF 1.1 IR 500 I ² t 10.4 CJ 25 RØJA 40 TJ -55 to +150 | VRRM 50 100 200 400 600 800 1000 VRMS 35 70 140 280 420 560 700 VDC 50 100 200 400 600 800 1000 I(AV) 1.0 30 1.1 10 < | Note:1.Measured at 1.0MHz and applied reverse voltage of 4.0V DC. 2.Thermal resistance from junction to ambient mounted on P.C.B. with 0.5*0.5"(13*13mm) copper pads. # **DB101S ~ DB107S** ### FIG.5-TYPICAL REVERSE CHARACTERISTICS